ON THE BEHAVIOR OF THE OSCILLATORY SOLUTIONS OF
FIRST OR SECOND ORDER DELAY DIFFERENTIAL
EQUATIONS

CH. G. PHILOS, 1. K. PURNARAS AND Y. G. SFICAS

ABSTRACT. Some new results are given concerning the behavior of the oscil-
latory solutions of first or second order delay differential equations. These
results establish that all oscillatory solutions z of a first or second order delay
differential equation satisfy z(t) = O(v(t)) as t — co, where v is a nonoscilla-
tory solution of a corresponding first or second order linear delay differential
equation. Some applications of the results obtained are also presented.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Oscillation Theory for delay differential equations has grown rapidly during the
past two decades. In this time period, several books appeared which presented the
current status of this theory and certainly greatly influenced later developments.
See the books by Erbe, Kong and Zhang [1], Gopalsamy [2], Gyéri and Ladas [3],
and Ladde, Lakshmikantham and Zhang [5].

In this paper, we deal with the behavior of the oscillatory solutions for first or
second order (linear as well as not necessarily linear) delay differential equations.
More precisely, we establish that all oscillatory solutions z of a first or second
order delay differential equation are such that z(f) = O(v(t)) as ¢ — oo, where
v is a nonoscillatory solution of a corresponding first or second order linear delay
differential equation. The results obtained are heading towards a new direction in
the study of the oscillatory solutions of delay differential equations. As far as the
authors know, the only result relative to the ones presented here is Theorem 2 in
the paper by Huang [4].

Consider the first order linear delay differential equation

(E1,6) ) +6 Y )zt — () =0 (5= %1)
keK
as well as the second order linear delay differential equation
(Es) () + Y pr(t)a(t — mx(t) =0,
keK

where K is an initial segment of natural numbers (K # @), pr for k € K are
nonnegative confinuous real-valued functions on the interval [0,00), and 7 for
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k € K are nonnegative continuous real-valued functions on [0, 00) such that
t}.1111 t—7e(#)] =0 for ke K.
Consider also the linear delay differential equations

(ET) (@) + Y i)zt — :(8) — D _pi(B)z(t — 75(8)) =0
iel jeJ

and

(E3) () + Y p)a(t — Ti(2)) — Y _ pi(D)z(t — 75(2)) =0,
i€l jeJ

where I and J are subsets of K with INJ = @ and IUJ = K. In the case
that one of I or J is the empty set, we use the usual convention Ez = 0. When
I = @, the differential equation (Ej) coincides with (E;,—1), while for J = @
the differential equation (E}) coincides with (E;,+1). Moreover, for I = @ the
differential equation (E3) takes the form

() 2@ = 3 pet)lt — Tu()) =0,
keK
while in the case where J = @ the differential equation (E3) coincides with (Ez).
Let #o > 0 and set
= %[ﬁ — 7k(t)]-
(Note that —oo < t_3 < g and that ¢_, depends on the delays 7% for k¥ € K and
the initial point ¢o.) By a solution on [tg,c0) of the first order delay differential
equation (E;,§) or (Ej) we mean a continuous real-valued function z defined on
the interval [t_;,c0), which is continuously differentiable on [tg,00) and satisfies
(Eq,6) or (E7) respectively for all £ > to. A solution on [tg,c0) of the second order
delay differential equation (Eq) or (E3) is a continuous real-valued function x on the
interval [t_;,00), which is twice continuously differentiable on [tg, 00) and satisfies
(E2) or (E3) respectively for every ¢ > tp.

As usual, a continuous real-valued function defined on an interval [r, co) is said
to be oscillatory if it has arbitrarily large zeros, and otherwise it is called nonoscil-
latory.

The first two main results of the paper are Theorems 1 and 2 below. In these
theorems, it will be supposed that the coefficients pr for k € K and the delays T
for k € K are such that

(H) > pe(t)re(t) >0 for allt>0.
keEK

Clearly, (H) means that, for any ¢ > 0, there exists at least one index k € K so
that pg(t) > 0 and 74(¢) > 0.

Theorem 1. Let v be a nonoscillatory solution of (E1,6). Then every oscilla-
tory solution = of (E}) satisfies

P) z(t) = O(v(t)) ast— oo.

Theorem 2. Let v be a nonoscillatory solution of (Eg). Then every oscillatory
solution x of (E3) satisfies (P).



ON THE BEHAVIOR OF OSCILLATORY SOLUTIONS 3

In order to present the other two main results of our paper, let us consider the
(not necessarily linear) delay differential equations

(Ela 6)
2(6)+ Y pit)z(t — Ti(t)) — > POzt — () — 6f(t, z(t) =0 (8 = %1)
i€l jeJ
and
(E2) ")+ Y pu®)m(t—a(t)) = 3 pi(B)a(t — (1)) — F(t,2(2) = O,
i€l JjEJ

where f is a continuous real-valued function on [0,00) xR with the sign property
2f(t,2) >0 for everyt >0 and all z€ R - {0}.

In the case where- I = &, the differential equations (El, 6) and (Eg) take, respec-
tively, the forms

2'(t) - > pe(t)r(t — Ti(t)) — 6f(t,z()) =0 (5 ==£1)
keEK
and

2"(t) = > pr(®)a(t — 7k (2)) — (2, 2(2)) = 0.
keK
Moreover, when J = @&, the differential equations (El, §) and (Eg) can respectively
be written
&)+ ) pe(®)a(t —7x(t) — 6f(t,z(t)) =0 (6= +1)
keK
and
() + Y pr(t)z(t — T (t) — f(t, 2(8) = 0.
keK
We will consider only such solutions of the delay differential equations (E;, §) and

(E3), which are defined for all large ¢. Let to > 0 and set t_; = léme'frgxtgitn[t — 7r(2)]
= 1l0

(=00 < t_1 < tp). By a solution on [tg,c0) of (E1,6) we mean a continuous
real-valued function z defined on the interval [t_;,c0), which is continuously dif-
ferentiable on [tg, c0) and satisfies (El,é) for every t > tg. A solution on [tg, c0) of
(Ez) is a continuous real-valued function z on [{_1, 0o}, which is twice continuously
differentiable on [to, 00) and satisfies (E;) for ¢ > to.

Theorems 3 and 4 below hold without the assumption (H) on the coefficients py
for k € K and the delays 1 for k€ K.

Theorem 3. Let v be a nonoscillatory solution of (E1,6). Then every oscilla-
tory solution x of (Ei,6) satisfies (P).

Theorem 4. Let v be a nonoscillatory solution of (E2). Then every oscillatory
solution = of (Eg) satisfies (P).
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The proofs of our main results, i.e. of Theorems 1-4, will be given in Section 2.
In the last section (Section 3), Theorems 1 and 2 will be applied to the special case
of first or second order linear autonomous delay differential equations of simplest
type.

Before closing this section, we will give some interesting consequences of our
main results. Corollaries 1, 2, 3 and 4 below follow immediately from Theorems
1, 2, 3 and 4 respectively. Note that in Corollaries 1 and 2 it is supposed that the
coefficients py for k € K and the delays Ty, for k € K satisfy (H), while Corollaries
3 and 4 hold without this assumption.

Corollary 1. (i) If (E1,6) has a bounded nonoscillatory solution, then all
oscillatory solutions of (E3) are bounded.

(i) If (E1,8) has e nonoscillatory solution that tends to zero at oo, then all
oscillatory solutions of (E3}) tend to zero at co.

Corollary 2. (i) If (Eq) has a bounded nonoscillatory solution, then all oscil-
latory solutions of (E3) are bounded.

(ii) If (E2) has a nonoscillatory solution that tends to zero at oo, then all oscil-
latory solutions of (E3) tend to zero at oo.

Corollary 3. (i) If (E1,6) has a bounded nonoscillatory solution, then all
oscillatory solutions of (E,8) are bounded.

(ii) If (E1,8) has a nonoscillatory solution that tends to zero at co, then all
oscillatory solutions of (E1,8) tend to zero at co.

Corollary 4. (i) If (E2) has a bounded nonoscillatory solution, then all oscil-
latory solutions of (Es) are bounded.

(ii) If (E2) has a nonoscillatory solution that tends to zero at oo, then all oscil-
latory solutions of (f)g) tend to zero at oco.

2. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let v be a nonoscillatory solution on an interval [tp,c0),
to > 0, of the delay differential equation (E;, §) and let = be an arbitrary oscillatory
solution on an interval [t3,c0), t§ > 0, of the delay differential equation (Ej).
Without loss of generality, we can suppose that v(¢) # 0 for all £ > {_;, where

t_; = minminft — 7(t)]. (Clearly, —oco < t_; < tp.) Furthermore, as the negative
keKt>to

of a solution of (Ei,§) is also a solution of the same equation, we may (and do)
assume that v is positive on the interval [t_;, o). Next, we set Ty = max{to, t3} and
T ;= mmmm[t = Tk(t)]. Obviously, —co<T_; <Tpand T_; = ma.x{t_l,til},

kEKt2To
where t* ;| = w[t = Tk (t)] (—o0 < %, < t§). Moreover, we define
x(t)
t)=—— >T3.
(1) y(t) 20 fort>T_,

For every ¢t > Tp, we obtain
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S = ' (t)v(t) —x(®)'() _ 1 [x,() EE? ,(t)]

v2(t) RY0)
= -F)—[:r’(t) () (2)]
» U(t)l sz(t)x(t 7i(0) + D _pi®)a(t — 75()+
JjeJ

+6y(t) D pr(t)o(t— Tk(t))]

k€K
= [ D)yt = r)lt — i)+
+ Zpg Oyt — 5@t — 75(0) +

jeJ

+6y(t) Y paE)u(t — Ti(t)) +

el

+8y(t) Y pi()v(t — (t))}

jeJd
and consequently

(2) Su(t)y'(8) = D pi(2) [y(2) — by(t — ()] w(t — 7:(8)) +

iel

+ 3 pi(e) [y(®) + Syt — 5 ()] v(t — 75(t))
jeJ
for all t > T.

Now, we will show that y is bounded on the interval [T_;,c0). Assume, for the
sake of contradiction, that y is unbounded on [T_;,c0). As —z is also an oscillatory
solution of (E}) and —y = (—z)/v on [T-1,00), we may (and do) suppose that y is
unbounded from above. Clearly, y is oscillatory. Thus, we can choose a sufficiently
large T' > T} so that

®3) y(T) =
and
(4) 9(T) > y(t)| for T_1 <t <T.

By (3), from (2) it follows that
0 = > m(T)W(T) — 6y(T — o(T)] (T — :(T)) +
il
+ > 2i(T) (D) + 8y(T — m5(T)] o(T — 75(T)),
jEJ

i.e.
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() 3 k(@) W(T) = 8xy(T — 7(T))] o(T — 7x(T)) =0,

keEK
where

bp=06 fkel, and fr=-0 if ke J.

The proof will be accomplished by proving that (5) is impossible. We first claim
that, for any index k € K, it holds

(6) y(T) — 6xy(T — 7(T)) 2 0, if 74(T) =0
and
7 y(T) — 6x9(T — 74(T)) > 0, if 7x(T) > O.

To establish our claim, let us consider an arbitrary index k € K. In the case where
T&(T") = 0, we obtain
y(T) = 6xy(T — (1)) = y(T) - Sry(T)
0,if 6 = +1
2y(T), if 6, = —1
and hence, since (4) implies that y(T') > 0, we have y(T') — 6xy(T — 7%(T)) > 0. If
7k(T) > 0, then from (4) we derive
y(T) > ly(T — (1)) = bxy(T — 74(T))

and consequently y(T) — 6xy(T — 7%(T)) > 0. So, our claim is proved. Next,
by taking into account assumption (H), we consider an index kg € K such that
Thke (T) > 0 and

(8) Pro(T) > 0.

Because of (7), we have

(9) Y(T) — bkoy(T — 710 (T)) > 0.
Moreover, (6) and (7) imply that

(10) Y(T) — 6xy(T —7x(T)) >0 forallk € K.
Furthermore, we obviously have

(11) pe(T) >0 forke K

and

(12) v(T —7(T)) >0 forevery k € K.

Finally, the impossibility of (5) follows immediately by using (8), (9), (10), (11)
and (12) and so the proof of the theorem is complete.

Proof of Theorem 2. Let v be a nonoscillatory solution on an interval [tg, c0),
to > 0, of the delay differential equation (Eg) and assume that z is an oscillatory
solution on [t§, 00), t = 0, of the delay differential equation (E3). As —v is also
a solution of (Ez), we can restrict ourselves only to the case where v is eventually
positive. Furthermore, there is no loss of generality to suppose that v is positive on

the whole interval [t_;, co), where t_; = minmin[t — 74(t)] ( —c0 < t_1 < o). Let
keKt>to
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Toand T_; ( —oco < T3 < Tp) be defined as in the proof of Theorem 1. Moreover,
let ¥ be defined by (1).
‘We immediately obtain

Y (t) = W[I (£) —y()v'()] for t > Tp.

Thus, for t > Ty, we derive

V@) = i 5 {EO -0V - 75 0 -1 O/ )

6
TN CAORICHORION0 BION0)
= ;’) [="(t) — 24/ (t)v' (&) — g (2]

= YOO+

+W [— Zpi(t)x(t - 7i(t)) + ij ()t —75(£)+

icl jeg

+y(8) Y pr(t)o(t — T(2))

keK

= —Ey ") (t) +

ﬁ [_ Zf’i(t)y(t = 7))ot — 7i(t))+
i€l
+ 2 ps(ue = ()t~ 75() +y(©) >_pi(H)o(t — mi(#)

JjeJ i€l

+y() Y _pi((t— T j(f))}

J€J
and so

(13) v(B)y" () + 24 (' (8) = Y 2a(®) ly(e) — y(t — ma()] wlt — () +

iel

+ > pi®) W) + y(t — T @) vt — 75(2))
jeJ
for every t > Tp.

Our purpose is to prove the boundedness of y on the interval [T_;, o). For the
sake of contradiction, we will suppose that y is unbounded on this interval. Since
—y = (—x)/v on [T_;,0) and —z is also an oscillatory solution of (E3), we may
(and do) assume that y is unbounded from above. Hence, as y is oscillatory, there
exists a sufficiently large T > Tp such that (3) and (4) are satisfied, and

(14) y'(T) <o0.
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In view of (3) and (14), from (13) we obtain

0 > Y p(T)W(T) - y(T — 7:(T)] w(T — 7:(T)) +
iel
+Y p(T) [Y(T) +y(T — 75T v(T — 5(T))-
jeJ
By setting
ee=+1 ifkel, and ¢=-1 ifked,
the last inequality can be written

(15) > Be(T) W(T) — exy(T — T (T))] (T — 7(T)) < 0.

keK
Finally, following the same arguments as in the proof of Theorem 1 with ¢ in place
of &y (for any k£ € K), we can show that (15) is impossible. This contradiction
completes the proof of the theorem.

Proof of Theorem 3. Let v be a nonoscillatory solution on an interval [ig, co),
to = 0, of (E;,6) and counsider an arbitrary oscillatory solution z on an interval
[{0, 00), to > 0, of the delay differential equation (El, 6). As in the proof of Theorem
1, we may (and do) assume that v is positive on the whole interval [t_;,c0), where

by = m[t - Te(t)] (o0 < t_1 < tp). Set Ty = max{te,to} and Ty =

migminft — 74(t)] (~00 < Ty < Tp). It is obvious that T = max{t_1,7_1},

where {_; =

y by (1).
We obtain for ¢t > T}

’ _ X ’ 1
y(t) = @[w (&) — y(&)v'(2)]

inft — 7%(t)] (—oo < Z_1 < %p). Moreover, we define the function
kEKfoo

]

% =St - @) + 3 p @)t — 75 0)+

i€l jed
+65 (¢, 2(t)) + 6y(t) D _ pr(t)v(t — 'rk(t))]
keK
and so we can easily find
(16) su(t)y'(t) = f(t, z(t)) +
+ pi(t) [y(t) — Syt — T ()] v(t — i) +
iel
+> pi(®) W) + Sy (t — ()] w(t — 75(2))
jed

for every ¢ > Tp.

Now, assume, for the sake of contradiction, that y is unbounded on [T, c0).
We observe that —z is an oscillatory solution of an equation of the form (]7:}1,5)
with f in place of f, where f(t,2) = —f(,—z) for (t,z) € [0,00)xR. Clearly, f is
subject to the same conditions as f. So, since —y = (—z)/v on [T_;, ), we can
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confine our discussion only to the case where y is unbounded from above. Hence,
by taking into account the oscillatory character of Y, we can consider a sufficiently
large T > To such that (3) and (4) are satisfied. Then, by (3), from (16) it follows
easily that

a7 AT+ ) (D) WUT) = 6xy(T — mi D)) o(T ~ 7(T)) =0,

keK
where &y for k € K are defined as in the proof of Theorem 1. In view of (4), we
must have y(T) > 0 and so z(T') is also positive. Thus, because of the sign property
of the function f, we always have

(18) F(T,z(T)) > 0.

Furthermore, as in the proof of Theorem 1, we conclude that (6) and (7) are fulfilled
for any index k € K and consequently (10) holds. On the other hand, (11) and
(12) are obviously satisfied. Finally, by using (10), (11), (12) and (18), we can
immediately verify that (17) is impossible. So, our proof is complete.

Proof of Theorem 4. Let v be a nonoscillatory solution on [to,00), 2o > 0, of
(E2) and suppose that z is an oscillatory solution on [tp, 00), g > 0, of the delay
differential equation (E;). As in the proof of Theorem 2, we assume that v is positive

on the whole interval [t_;,c0), where ¢_; = minmin[t — T(t)] (—o0 < t_y < tg).
kEKt>to

Define Ty and T_; (—o0 < T; < Tp) as in the proof of Theorem 3. Moreover,
define y by (1).
As in the proof of Theorem 2, we obtain for ¢ > To

y(t) = —(1-5 [ (2) — 24/ (£)0' (8) — (D)o (2)]

- —v—(‘i—)y'(t)v'(t) +

%ﬂ =Y niO)a(t - ) + 3 pi)z(t — 750+
icl

JET

+(t2(®) +y(2) D pe(t)o(t - Tk(t))}

keK
and so we can easily derive

(19) v(®)y"(£) + 29/ () () = F (5, 2(2)) +

+ D i(t) [y(t) — y(t — 7o) vt — m(2)
i€l
+ > pi() (E) + y(t — m5(6)] vt — 75(8))
jeJ
for all ¢ > Ty.

Assume now that y is unbounded on the interval [T-1,00). Since —y = (—z)/v
on [T_;,00) and —z is also an oscillatory solution of an equation of the form (E2)
with f in place of f, where f(t,z) = —f(t,—z) for (t,2) € [0,00)xR, we may (and
do) suppose that y is unbounded from above. Thus, there exists a sufficiently large



10 CH. G. PHILOS, I. K. PURNARAS AND Y. G. SFICAS

T > Tp such that (3), (4) and (14) hold. By (3) and (14), from (19) it follows easily
that

(20)  F(T,=(T) + Y pu(T) Y(T) — exy(T — (T (T — 74(T)) < O,

k€K
where ¢, for k € K are defined as in the proof of Theorem 2. By the same technique
as in the proof of Theorem 3 with ¢; in place of §; (for ¥ € K), we can arrive at
the contradiction that (20) is impossible. This contradiction completes the proof
of the theorem.

3. APPLICATIONS

In this section, we will apply Theorems 1 and 2 to the special case of first or
second order linear autonomous delay differential equations. Our interest will be
concentrated on the simple case of first or second order linear autonomous delay
differential equations with one or two delays.

Consider the first order linear autonomous delay differential equations

(D1) z'(t) + pz(t — 7) =0,

(D2) #'(t) — pz(t — 7) =0,

(Ds) z'(t) + px(t — 7) + gz(t —0) = 0,
(Ds4) #'(t) —pz(t—7) — qz(t — 0) =0,
(Ds) 7'(t) +pr(t—7) —gz(t—0) =0
as well as the second order linear autonomous delay differential equations
(Ds) Z(t) +pz(t— 1) =0,

(D7) z''(t) — pz(t —7) =0,

(Ds) z"(t) + px(t — 7) + qz(t — 0) = 0,
(Do) z"(t) — pz(t — 7) — gz(t —0) =0,
(D10) () +pz(t —7) —qz(t — o) =0,

where p, q, T and o are positive constants. As it is natural, i will be supposed that
T#0o.
By applying Theorem 1, we immediately obtain the following results:

Let v be a nonoscillatory solution of (D1) or (D2). Then all oscillatory solutions
z of (D1) and (D2) satisfy (P), i.e. z(t) = O(v(t)) as t — co.

Let v be a nonoscillatory solution of (D3) or (D4). Then all oscillatory solutions
z of (D3), (Ds) and (Ds) satisfy (P).

Similarly, an application of Theorem 2 leads to the next results:
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Let v be a nonoscillatory solution of (Dg). Then all oscillatory solutions T of
(D¢) and (D7) satisfy (P).

Let v be a nonoscillatory solution of (Dg). Then all oscillatory solutions = of
(Ds), (Do) and (Do) satisfy (P).

It is known that the existence of a nonoscillatory solution of a linear autonomous
delay differential equation is guaranteed by the existence of a real root of its char-
acteristic equation. So, the above results can be used to obtain new criteria on the
behavior of the oscillatory solutions of the delay differential equations (D;)-(D1o)-
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